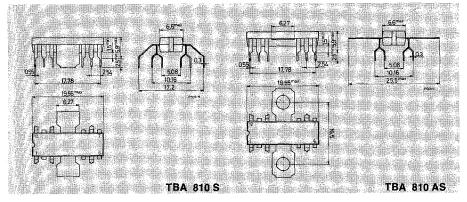
7 W AUDIO POWER AMPLIFIER WITH THERMAL SHUT-DOWN

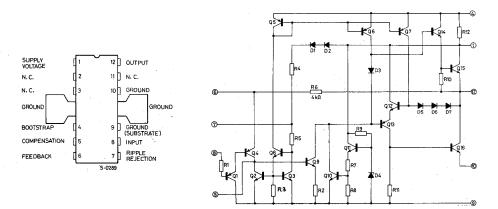
The TBA810 S is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for use as a low frequency class B amplifier.

The TBA810 S provides 7 W output power at 16 V/4 Ω , 6 W at 14.4 V/4 Ω , 2.5 W at 9 V/4 Ω , 1 W at 6 V/4 Ω and works with a wide range of supply voltages (4 to 20 V); it gives high output current (up to 2.5 A), high efficiency (75% at 6 W output), very low harmonic and cross-over distortion. The circuit is provided with a thermal limiting circuit which fundamentally changes the criteria normally used in determining the size of the heatsink, in addition the TBA 810 S/AS can withstand short-circuit on the load for supply voltages up to 15 V.

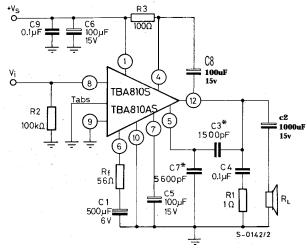

The TBA 810AS has the same electrical characteristics as the TBA 810S, but its cooling tabs are flat and pierced so that an external heatsink can easily be attached.

	Vs	Supply voltage	20	v
	10	Output peak current (non-repetitive)	3.5	А
\rightarrow		Output peak current (repetitive)	2.5	А
\rightarrow	Ptot	Power dissipation: at Tamb ∠ 80 °C (for TBA 810 S)	1	w
		at Ttab <u>←</u> 100 °C (for TBA 810 AS)	5	w
	Tstg, Tj	Storage and junction temperature	-40 to 150	°C

MECHANICAL DATA


Dimensions in mm

TBA 810S TBA 810AS



CONNECTION AND SCHEMATIC DIAGRAM

TEST AND APPLICATION CIRCUIT

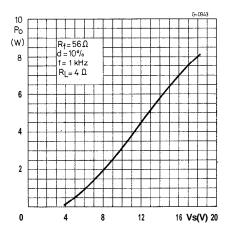
* C3, C7 see fig. 6

THERMAL DATA					TBA 810S	TBA 81 OAS
Rth j-tab	Thermal	resistance	junction-tab	max	12 °C/W	10 °C/W
Rth j-amp	Thermal	resistance	junction-ambient	max	70* °C/W	80 C/W

* Obtained with tabs soldered to printed circuit with minimized copper area

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; Tamb = 25 °C)


		Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Vs	Supply voltage (pin 1)		4		20	ν
	Vo	Quiescent output voltage (pin 12)		6.4	7.2	8	v
	l _d	Quiescent drain current	$V_{s} = 14.4 V$		12	20	mA
→	l _b	Bias current (pin 8)			0.4	4	μΑ
^	Po	Output power		4.6	7 6 2.5 1		≈ ≈ ≈
	V _{i(rms)}	Input saturation voltage				220	mV
-	V	Input sensitivity	$P_{o} = 6 W$ $V_{s} = 14.4 V$ $R_{L} = 4 \Omega$ $f = 1 \text{ kHz}$ $R_{f} = 56 \Omega$ $R_{f} = 22 \Omega$		80 35		mV mV
	R _i	Input resistance (pin 8)			5	-	MΩ
	B	Frequency response (-3 dB)	Vs = 14.4 V RL=4Orm C3 = 820 pF C3= 1500pF		to 20, to 10,		Hz Hz



ELECTRICAL CHARACTERISTICS (continued)

		Parameter	Test conditions	Min. Typ. Max.	Unit
	d	Distortion	Po = 50 mW to 3 W Vs = 14.4 v RL = 4 Ω f = 1 kHz	0.3	%
	Gv	Voltage gain (open loop)	Vs = 14.4 v RL= 4 Ω f = 1 kHz	80	dB
	Gv	Voltage gain (closed loop)	Vs = 14.4 v RL= 4 Ω f = 1 kHz	34 37 40	dB
	eN	Input noise voltage	V_{s}^{s} = 14.4 v Rg = 0 B (-3 dB) = 20 Hz to 20,000 Hz	2	- μV
	i _N	input noise current	Vs = 14.4 v B (-3 dB) = 20 Hz to 20,000 Hz	0.1	nA
		Efficiency	Po=5W Vs = 14.4 v RL=4Orm f = 1 kHz	70	%
\rightarrow	SVR	Supply voltage rejection	$Vs = 14.4 V$ $RL= 4 \Omega$ $frippre = 100 Hz$	48	dB
→	ld	Drain current	Po=6W Vs = 14.4 v RL= 4 Ω	600	mA
→		* Thermal shut-down case temperature	Ptot = 2.8 w	120	

*See figs. 7 and 16

Fig. 1 - Typical output power versus supply voltage

Fig. 2 - Maximum power dissipation

Fig. 4. Turnical distortion

output power G-0945 d (%) 12 $R_L = 4 \Omega$ $R_{f} = 56\Omega$ f=1kHz 10 $V_{S} = 14,4 V$ 8 6 4 2 0 6 8 ์ ษ(พ) 10-1 1

Fig.3 - Typical distortion versus

Fig. 4 - Typical distortion versus frequency

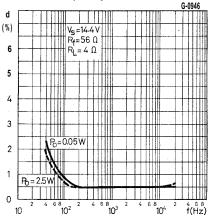
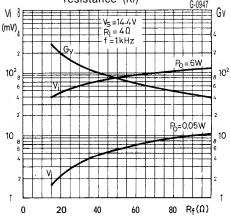
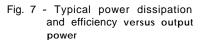




Fig. 5 - Typical relative voltage gain (closed loop) and typical input voltage versus feedback resistance (Rf)

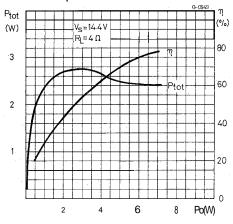
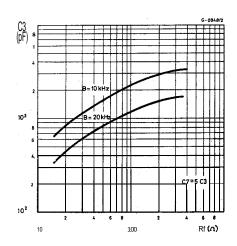
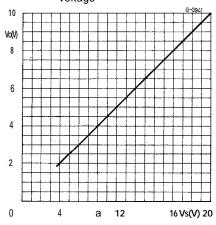
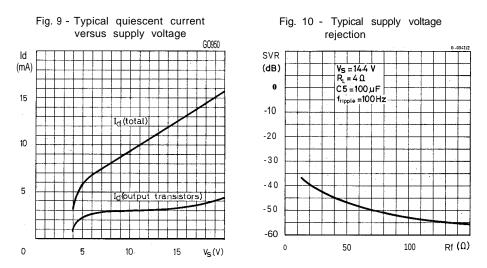
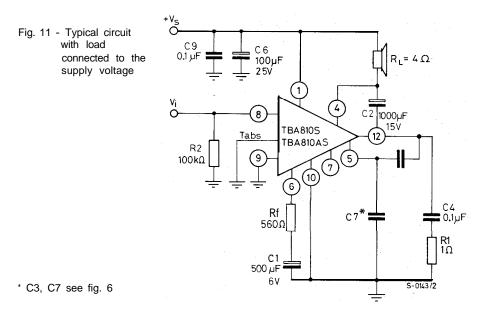


Fig. 6 -Typical value of C3 versus Rf for various values of B


Fig. 8 - Typical quiescent output voltage (pin 12) versus supply voltage

For portable equipment the circuit in Fig. 11 has the advantages of fewer external components and a better behaviour at low supply voltages (down to 4 V).

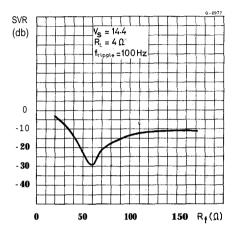


Fig. 12 - Typical supply voltage rejection versus Rf (fig. 11 circuit)

MOUNTING INSTRUCTIONS

The thermal power dissipated in the circuit may be removed by connecting the tabs to an external heat sink (TBA 810 AS - fig. 13) or by soldering them to an area of copper on the printed circuit board (TBA 810s - fig. 14).

During soldering the tabs temperature must not exceed $260 \,^{\circ}\text{C}$ and the soldering time must not be longer than 12 seconds.

Fig. 15a and 15b show two ways that can be used for mounting the device.

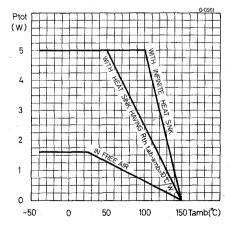


Fig. 13 - Maximum power dissipation versus ambient temperature (for TBA 810 AS only)

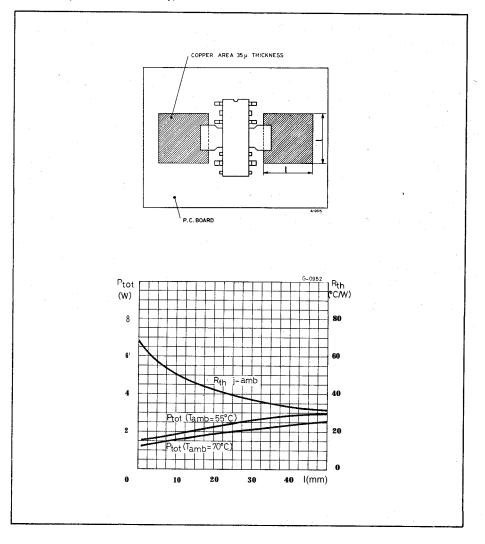
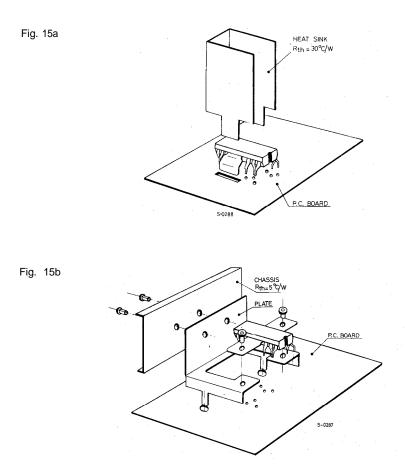
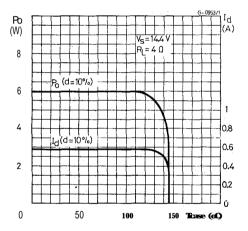
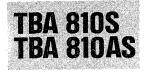



Fig. 14 - Maximum power dissipation versus copper area ,of the P.C. board (for TBA 810s only)

Fig. 15a shows a method, of mounting the TBA 810S that is satisfactory both from the point of view of heat dissipation and from mechanical considerations. For TBA 810AS the desired thermal resistance is obtained by fixing the elements shown in fig. 15b, to a suitably dimensioned plate. This plate can also act as a support for the whole printed circuit board; the mechanical stresses do not damage the integrated circuit. This is firmly fixed to the element, in fig. 15b.

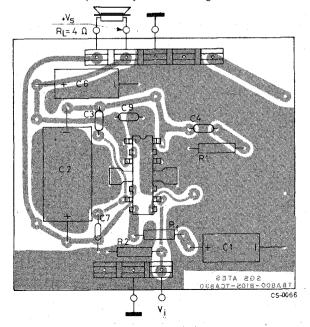

THERMAL SHUT-DOWN


The presence of a therms! limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported

2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction temperature: all that happens is that Po (and therefore Ptot) and Id are reduced (fig. 16).

Fig. 16 - Output power and drain current versus package temperature



 V_{i} V_{i

Fig. 17 - P.C. board and component layout for the test and application circuit

Fig. 18 - P.C. board and component layout for the fig. 11 circuit

