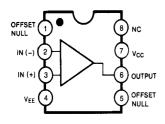
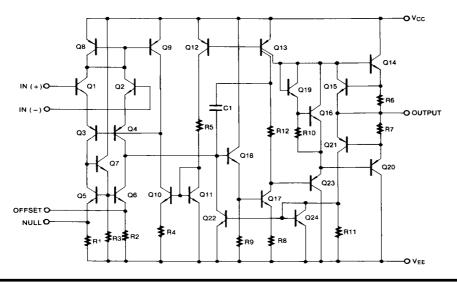

SINGLE OPERATIONAL AMPLIFIERS

The KA741 series are general purpose operational amplifiers which feature improved performance over industry standards like the KA709. It is intended for a wide range of analog applications.


The high gain and wide range of operating voltage provide superior performance in intergrator, summing amplifier, and general feedback applications.

FEATURES

- Short circuit protection
- Excellent temperature stability
- Internal frequency compensation
- High Input voltage range
- Null of offset


BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
KA741E	8 DIP	
KA741	0 0 11	0 ~ + 70℃
KA741ED	8 SOP	0-4700
KA741D	0 001	
KA741I	8 DIP	
KA741EI	0 5	-40 ~ +85℃
KA7411ID	8 SOP	-40 ~ +03 C
KA741EID	0 001	

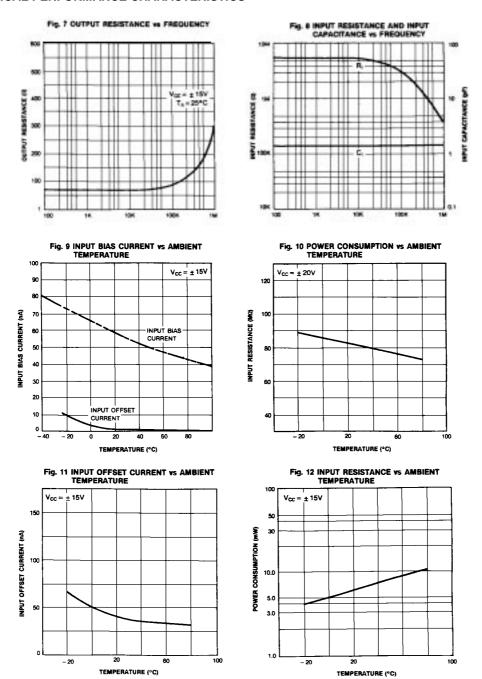
SCHEMATIC DIAGRAM

Characteristic	Symbol	KA741	KA741E	KA741I	Unit
Supply Voltage	V _{CC}	± 18	± 22	± 18	V
Differential Input Voltage	$V_{I(DIFF)}$	± 30	± 30	± 30	V
Input Voltage	V_{I}	± 15	± 15	± 15	V
Output Short Circuit Duration	Short Circuit Duration		Indefinite	Indefinite	
Power Dissipation	P_D	500	500	500	mW
Operating Temperature Range	T_OPR	0 ~ + 70	0 ~ + 70	-40 ~ + 85	${\mathbb C}$
Storage Temperature Range	T_{STG}	-65 ~ + 150	-65 ~ + 150	-65 ~ + 150	\mathbb{C}

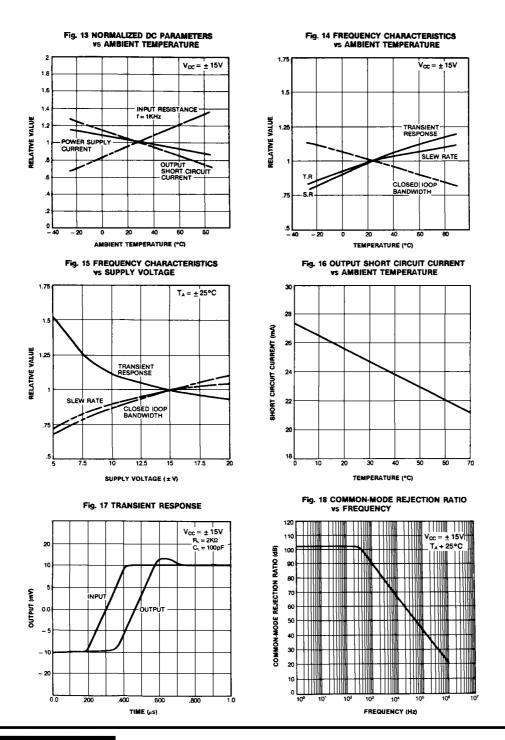
ELECTRICAL CHARACTERISTICS

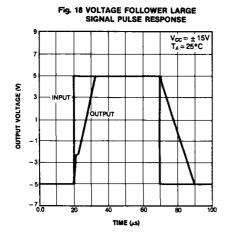
Characteristic	Symbol	Test Conditions		KA741E			KA	Unit		
Characteristic	Symbol	75 Test conditions			Тур	Max	MIn	Тур	Max	Oilit
Input Offset Voltage	VIO	R _S ≤ 10KΩ						2.0	6.0	.,
input Onset voltage	VIO	R _S ≤ 50Ω			0.8	3.0				mV
Input Offset Voltage	V _{IO(R)}	V _{CC} = ± 20V		± 10				± 15		mV
Adjustment Range	*10(K)	- 20 v		_ 10				- 10		
Input Offset Current	I _{IO}				3.0	30		20	200	nA
Input Bias Current	I _{BIAS}				30	80		80	500	nΑ
Input Resistance	Rı	V _{CC} =± 20V		1.0	6.0		0.3	2.0		$M\Omega$
Input Voltage Range	$V_{I(R)}$			± 12	± 13		± 12	± 13		V
	G _V	R _L ≥ 2KΩ	V _{CC} =± 20V,							
			V _{O(P.P)} =± 15V	50						
Large Signal Voltage Gain			V _{CC} =± 15V,				20	200	V/m	V/mV
			V _{O(P.P)} =± 10V				20	200		
Output Short Circuit Current	I _{sc}			10	25	35		25		mA
		V _{CC} =± 20V	R _L ≥ 10KΩ	± 16						V
Output Valtage Suing	V		R _L ≥ 10KΩ	± 15						
Output Voltage Swing	$V_{O(P.P)}$		R _L ≥ 10KΩ				± 12	± 14		
		V _{CC} =± 15V	R _L ≥ 10KΩ				± 10	± 13		
		R _S ≤ 10KΩ , V _{CM} = ± 12V					70	90		
Common Mode Rejection Ratio	CMRR	R _S ≤ 50KΩ , V _{CM} = ± 12V		80	95					dB
		$V_{CC} = \pm 15V \text{ to } V_{CC} = \pm 15V$		86	96					
		R _S ≤ 50Ω		00	96					
Power Supply Rejection Ratio	PSRR	$V_{CC} = \pm 15V$ to $V_{CC} = \pm 15V$					T	00		dB
		R _S ≤ 10KΩ					77	96		

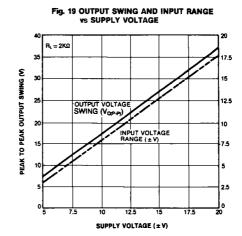
ELECTRICAL CHARACTERISTICS (Continued)


Characteristic		Symbol	Test Conditions	KA741E			KA741/KA741I			Unit
		Syllibol	rest conditions	Min	Тур	Max	Min	Тур	Max	Oint
Transient	Rise Time	t _R			0.25	0.8		0.3		μS
Response	Overshoot	OS	Unity Gain		6.0	20		10		%
Bandwidth		BW		0.43	1.5					MHz
Slew Rate		SR	Unity Gain	0.3	0.7			0.5		V/µ s
Supply Current		Icc	$R_L = \Omega$					1.5	2.8	mA
Power Consumption			V _{CC} = ± 20V		80	150				147
		Pc	V _{CC} = ± 15V					50	85	mW

ELECTRICAL CHARACTERISTICS


Characteristic	Symbol	Test Conditions		KA741E			KA	Unit		
Characteristic	Symbol			Min	Тур	Max	Min	Тур	Max	Onit
Input Offcot Voltage	.,	R _S ≤ 50Ω				4.0				.,,
Input Offset Voltage	V _{IO}	R _S ≤ 10KΩ							7.5	mV
Input Offset Voltage Drift	Δ V _{IO} /Δ T				15					μ V/°C
Input Offset Current	I _{IO}					70			300	nA
Input Offset Current Drift	Δ Ι _{ΙΟ} /Δ Τ					0.5				nA/℃
Input Bias Current	I _{BIAS}					0.21			0.8	μА
Input Resistance	R _I	V _{CC} = ± 20V	'	0.5						MΩ
Input Voltage Range	$V_{I(R)}$			± 12	± 13		± 12	± 13		V
		V _{CC} =± 20V V _{CC} =± 15V	Rs≥ 10KΩ	± 16						V
	.,		R _S ≥ 2KΩ	± 15						
Output Voltage Swing	$V_{O(P.P)}$		Rs≥ 10KΩ				± 12	± 14		
			R _S ≥ 2KΩ				± 10	± 13		
Output Short Circuit Current	I _{SC}			10		40	10		40	mA
0 N 1 D 1 1 D 1	OMED	R _S ≤ 10KΩ ,	V _{CM} =± 12V				70	90		ID.
Common Mode Rejection Ratio	CMRR	$R_S \le 50 K\Omega$,	V _{CM} =± 12V	80	95					dB
		V _{CC} =± 20V	R _S ≤ 50Ω	86	96					
Power Supply Rejection Ratio	PSRR	to ± 5V	R _S ≤ 10KΩ				77	96		dB
Large Signal Voltage Gain			V _{CC} =± 20V,	32						
			$V_{O(P-P)} = \pm 15V$							
	G∨	R _S ≥ 2KΩ	$V_{CC} = \pm 15V$,				15			V/mV
	JV	115- 210	V _{O(P.P)} =± 10V							
			$V_{CC} = \pm 15V$,	10						
			$V_{O(P-P)} = \pm 2V$							


TYPICAL PERFORMANCE CHARACTERISTICS



TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

 $\begin{array}{lll} \mathsf{FACT} \ \mathsf{Quiet} \ \mathsf{Series^{\mathsf{TM}}} & \mathsf{Quiet} \ \mathsf{Series^{\mathsf{TM}}} \\ \mathsf{FAST}^{\circledast} & \mathsf{Super} \mathsf{SOT^{\mathsf{TM}}}\text{--3} \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{Super} \mathsf{SOT^{\mathsf{TM}}}\text{--6} \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{Super} \mathsf{SOT^{\mathsf{TM}}}\text{--8} \\ \mathsf{Hi} \mathsf{SeC^{\mathsf{TM}}} & \mathsf{TinyLogic^{\mathsf{TM}}} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.